Corrigé

On pose $u'(x) = 2xe^{x^2-1}$ et $v(x) = x^2$. u est donc définie par $u(x) = e^{x^2-1}$ et, pour tout réel x, on a v'(x) = 2x. u et v sont dérivables, donc continues sur \mathbb{R} , et u' et v' sont dérivables, donc continues sur \mathbb{R} . Par intégration par parties, on obtient alors $\int_{-1}^1 2x^3 e^{x^2-1} \, \mathrm{d}x = \left[x^2 e^{x^2-1}\right]_{-1}^1 - \int_{-1}^1 2x e^{x^2-1} \, \mathrm{d}x$. Or $x \mapsto 2x e^{x^2-1}$ est une fonction continue sur \mathbb{R} et admettant donc une primitive. Une telle primitive est la fonction $F: x \mapsto e^{x^2-1}$. Donc $I = \left[x^2 e^{x^2-1}\right]_{-1}^1 - \left[e^{x^2-1}\right]_{-1}^1 = \left[e^0 - e^0\right] - \left[e^0 - e^0\right] = 0$.